
Geister Server Instructions
陳志昌、薛筑軒、吳建德、周子馨、張可欣、楊淳亘、蘇亭伃

February 25, 2025

Preface
The primary purpose of this program is to provide an open platform for

board game program developers to compete, test their program’s strength, or
evaluate differences in strength between various versions of their programs.
We also offers numerous convenient features to ease the burden on developers.

• Basic Features Usage: Please refer to Section 2, 3, 4, 5, 9.

• Advanced Usage: Please refer to Section 6, 7, 8.

Contents

1 Game Introduction 2

2 File Description 3

3 Environment Setup 4

4 Opening the Program 6

5 Game Setting 7

6 Room Introduction 14

7 Board Introduction 18

8 Features Overview 26

9 Communication Protocols 34

10 Q & A 47

11 References and Contact Information 50

1

1 Game Introduction
Geister is a two-player board game featuring a 6x6 board,8 red ghost pieces, and

8 blue ghost pieces (each player has 4 red and 4 blue).

1.1 Game Rule

Figure 1: An Actual Photo Of Geister

• Setup: Both players place their 8 ghost pieces within the 4x2 area closest to
them.

Note: Players cannot see each other’s ghost color.

• GameStart: Each turn, a player can move one of their ghost pieces.

– Able directions: front, back, left, right.
– Capturing a Piece: If a player moves their ghost to a place occupied by an
opponent’s ghost, the opponent’s piece is captured. Both players can know
the color of the captured pieces.

• GameEnd: The game ends when one of the following conditions is met.

– Win: Capture all four of your opponent’s blue ghost pieces.
– Loss: Capture all four of your opponent’s red ghost pieces.
– Win: One of your blue ghost pieces escapes through one of the corners of
your opponent’s side of the board.

2

2 File Description
Recommended to download/update the file at 120.126.151.216 (page link).

2.1 Folders

Figure 2: Client File Structure

• Board: Contains game board records and command files.

• Library: The game’s function library.

• LocalServer: The game’s local server.

• Search: Files for the AI program.

• Setting: Stores game settings and room configuration files.

• WebServer: Web-related files.

• Launcher.jar: The main Client application.

Note: Do not alter the folder structure arbitrarily, as it may cause path errors
and prevent the program from running properly.

3

http://120.126.151.216/download.html

3 Environment Setup
You need to complete environment setup to run the program.
For Ubuntu, the version tested was 22.04.4, other versions should also work suc-

cessfully.

3.1 Java
The program is written in Java, requiring a JVM to execute. Therefore, you must

install JRE/JDK first. Below are instructions for installing Java 8 64-bit on Windows and
Ubuntu.

Note: The minimum required Java version for this program is Java 8 64-bit.

3.1.1 Windows

Download and install JRE from the official website (Page Link).

3.1.2 macOS

Open the Terminal and enter the following command (Requires Homebrew to be
pre-installed):

macOS

brew tap adoptopenjdk/openjdk
brew install –cask adoptopenjdk8

3.1.3 Ubuntu

Open the Terminal and enter the following command:

Ubuntu

sudo apt-get update
sudo apt-get install openjdk-8-jdk

4

https://www.java.com/download/
https://brew.sh/

3.2 Browser
We recommend using Google Chrome as the browser.

3.2.1 Windows / macOS

Download and install Google Chrome from the official website (Page Link).

3.2.2 Ubuntu

Open the Terminal and enter the following command:

Ubuntu

wget https://dl.google.com/linux/direct/google-chrome-stable
_current_amd64.deb

sudo dpkg -i google-chrome-stable_current_amd64.deb

5

https://www.google.com/chrome/

4 Opening the Program
The program’s User Interface uses a GUI (Graphical User Interface). Below is an

introduction to how to use it. The usage method is the same for both Windows and
Ubuntu. However, due to permission issues on Ubuntu, you need to grant execution
permissions.

Ubuntu / macOS

cd <the_path_to_ubuntu>
chmod a=rwx -R ubuntu/

4.1 GUI
Double-click Launcher.jar in the folder directly, or use the Terminal:

Windows / Ubuntu

cd <the_path_to_Launcher.jar>
java -jar Launcher.jar
or use ’javaw’ if you don’t want a command prompt window to appear
javaw -jar Launcher.jar

Possible Issues on macOS

• cannot be opened because it is from an unidentified developer:

1. You can refer to instructions on how to open apps from unidentified
developers.

2. Allow all apps:

turn off
sudo spctl –master-disable
turn on
sudo spctl –master-enable

• Unable to access jarfile Launcher.jar:
Grant Java full disk access

– Java path:
/Library/Java/JavaVirtualMachines/openjdk-???.jdk/
Contents/Home/bin/java

– You can refer to instructions on how to adjust the ”Privacy” settings
on macOS

• Unable to Connect to Server:
Check if the firewall is enabled. You can refer to instructions on how to
modify the ”Firewall” preferences on macOS If the firewall is active, either
add an exception or disable the firewall.

6

https://support.apple.com/guide/mac-help/mh40616/mac
https://support.apple.com/guide/mac-help/mh40616/mac
https://support.apple.com/guide/mac-help/welcome/mac
https://support.apple.com/guide/mac-help/welcome/mac
https://support.apple.com/guide/mac-help/mh11783/mac
https://support.apple.com/guide/mac-help/mh11783/mac

5 Game Setting
This sectionwill explain the contents andmeanings of thegameparameters listed

in Figure 3.

5.1 Game Options Settings

Figure 3: GUI Client Settings Page

1. Game Type: This platform supports multiple types of games. You can select the
desired game category from this option.

2. Account: Player’s account, which must be applied for with the administrator.
Guest accounts range from a0 to a2000.

3. Password: Player’s password.Guest accounts have the password ”123”.

4. Room Type: Player can choose to engage in a general mode or participate in a
contest mode.

• General: A self-testing, casual mode for playing the game.
• Contest: A competitionmode for playing against other players and ranking.

5. Start Mode: Can be selected in general mode. Player chooses whether to create
a room or join an existing one.

• Open: Create a room for other users to join.

7

• Enter: Join a room created by another user.
• Local Server: Connects to local server instead of remote server.

6. Mid-Game: Can be selected in general mode. The game setup for the initial
board, chosen by the player in Open Room mode.

• Yes: The server will look for the player’s disconnected mid-game records
from that day and continue from the last board position.

• No: The game will use the default initial board provided by the server.
• Custom: The game will use the file from custom board path chosen by the
player to resume the game.

7. Connect Mode: The connection protocol between the client and the program.

• TCP: Use the TCP protocol.
• STDIO: Use standard input and output.
• Human: No program is used, and the player manually plays the game. If
both players choosemanual mode, a draw can be proposed; if either player
chooses manual mode, they can resign or abort the game.

8. Host First Move: The host player will either play first or second in the first game.

9. Change First Move: Whether the players will swap the first and second moves
after each game.

10. Server IP: The IP address of the server to connect to. Thedefault is 120.126.151.213.

11. Timer Mode: Combines common timer modes for quick settings of time limits,
per-move time, and shared move limits.

• None: No time limit is set, no time restrictions will apply.
• Custom: Player can freely set the time limit, per-move time, and shared
move options.

12. Time Limit: The thinking time (free time) given for the player in a game.

13. One Ply Time: The time limit for each move after the player’s thinking time runs
out.

14. Ply Share: Number of moves player must make within the time limit.

15. Repeat Times: The total number of games to be played in the room.

16. Max Move Number: The maximum number of moves allowed in a game. If ex-
ceeded, the game will end in a draw.

17. Board Path: When the Mid-Game option is set to ”Custom,” the client will read
the mid-game file from this path and send it to the server as the starting board.

Recommendation: Use an absolute path.

8

18. AI Path: The clientwill start the AI program from this path and connect according
to the selected connection protocol.

Recommendation: Use an absolute path.

19. AI Argument: The client will start the AI program with this argument.

This field can be used to set parameters for AI, or to use a conf or ini file to
let the AI read and configure the parameters.

5.2 Create Room
The player creating the room needs to configure the following game parame-

ters: Room Type, Start Mode, Mid-Game, Connect Mode, Host First Move, Change
First Move, Server IP, Timer Mode(Time Limit, One Ply Time, Ply Share), Repeat Times,
Max Move Number, Board Path, and AI Path.

Figure 4: open folder

Go to the open folder, as shown in Figure 4, and run Launcher.jar directly.

5.2.1 GUI

As shown in Figure 3, select ”Create Room” for the StartMode, configure the game
parameters and player information, then press the ”Connect” button to connect to the
server.

5.3 Join Room
For join mode, only the Room Type, Connect Mode, Server IP, and AI path need

to be configured. Other game parameters are set by the player creating the room.

Go to the enter folder, as shown in Figure 4, and run Launcher.jar again.

9

5.3.1 GUI

In Figure 3, select ”Join Room” for the Start Mode, configure the player informa-
tion, then press the ”Connect” button to connect to the server.

Figure 5: GUI Client Join Room Menu Page

After successfully connecting to the server, the Join Room menu will appear, as
shown in Figure 5. Select the room you want to join and click ”Confirm” to complete
the process.

Note: The joining player cannot use the same username as the host.

5.4 Joining a Contest
In contestmode, players need to configure the RoomType, ConnectMode, Server

IP, and AI Path. The game parameters are uniformly set by the organizer, players only
need to configure their player information.

As shown in Figure 4, execute Launcher.jar (refer to Section 4 for the opening
method).

5.4.1 GUI

in Figure 6, select ”Contest” for the Room Type, configure the player information,
and then press the ”Connect” button to connect to the server.

10

Figure 6: GUI Client Contest Settings

After connecting to the server, a list of competitions will appear, as shown in Fig-
ure 7. Please select the competition you wish to join.

Figure 7: GUI Client Competition List

After successfully joining a competition, a message will appear indicating that
you are waiting for opponents to join the room, as shown in Figure 8. If the opponent
has already joined, this screen will be skipped.

Figure 8: GUI Client Waiting for Opponent

Note: Do not close the program arbitrarily. Please wait patiently for your oppo-
nents to join. If you have any issues, please ask relevant personnel.

11

Once all players have joined the competition, please confirm that the competition
program’s parameters are correct, as shown in Figure 9.

In the bottom-right corner, there is an AutoStart option, which allows players to
automatically confirm. When enabled, the program will automatically confirm after
a 10-second countdown on the next competition page.

Figure 9: GUI Client Confirming Competition Program Settings

Note: This setting canbe confirmedduring the previous steps anddoes not need
to wait until this prompt appears.

After confirming the program parameters, if the opponents have not yet com-
pleted their parameter confirmation, a message will appear indicating that you are
waiting for the opponents, as shown in Figure 10. If the opponents have already con-
firmed, the competition will start after a 5-second countdown.

Figure 10: GUI Client Waiting for Opponent to Confirm Settings

Note: Do not close the program arbitrarily. Please wait patiently for your oppo-
nents to confirm. If you have any issues, please ask relevant personnel.

12

Once all players have confirmed the program, the competition will begin after a
5-second countdown, as shown in Figure 11.

Figure 11: GUI Client Pre-Competition Countdown

If a message similar to Figure 12, it means you are skipped for this round.

Figure 12: GUI Client Skipped Round

13

6 Room Introduction

6.1 Room Options Settings

Figure 13: Room Settings Page

1. Board Display Mode: Set the method for opening the board file.

• Default Browser: The Client opens the default web browser to display the
board.

• Remote: The board is displayed via a remote connection to the Client.
• No Display: The board is not displayed.

2. Output Window Scroll: Configure the scrollbar behavior in the output window.

• Auto Scroll to Bottom: Automatically scrolls to the bottom when content is
updated.

• No Action: Keeps the scrollbar position unchanged regardless of updates.

3. Output Window Background Color: Customize the output window’s background
color.

4. Output Window Font Color: Customize the font color in the output window.

5. Output Window Font Size: Customize the font size in the output window.

14

6. Webpage Auto Restart after Disconnection: Automatically reopens thewebpage
if a disconnection is detected.

7. Repeat Game Delay: Sets the delay time between games.

8. Time Auto Countdown:

• Enabled: Automatically counts down the remaining time.
• Disabled: Only updates the remaining timewhen receiving it from the Server
for each move.

9. Clear Last Game Output and Board: Determines whether to clear the output
window and board display after the specified number of games in this room.

10. Auto Close Webpage After Game: Determines whether to close the webpage
after the specified number of games in this room.

11. Automatic Start contest: Starts the competition automatically after a 10-second
countdown, without requiring further player confirmation.

12. Board Record File Output: Saves a record file (.txt) of the game in the Board
folder.

13. Command Log File Output: Saves a command record file (.command) of the
game in the Board folder.

14. Room Statistic File Output: Saves a statistics file (.info) of the game in the Board
folder.

6.2 Room Page
6.2.1 Game Parameters

Figure 14: Game Parameters Display Area

In the red box in Figure 14, the upper section shows the account names and rep-
resentative colors of both players, and an arrow indicating whose turn it is. The lower
section displays various game parameters for this room.

15

6.2.2 Game Status

Figure 15: Game Status Display Area

The red box in Figure 15 includes both players’ remaining time, transmission error
time, and win-draw-loss statistics.

• MyTime: Remaining time for the user.

• OpTime: Remaining time for the opponent.

• ErrorTime: Transmission error time. Let X and Y represent the time taken by
the AI for the move as recorded by the Server and Client, respectively. The cal-
culation formula is:

Er r or T i me = (X −Y)

2

This does not represent actual network latency, but can serve as a reference for
network stability.

• Statistics: The count of wins/draws/losses.

6.2.3 Output Window

Figure 16: Program Output Area

16

In the red box in Figure 16, the left section displays the program’s standard output
(stdout), the right section displays the standard error output (stderr).

Note: If outputs appear in batches rather than in real-time, refer to QA 10.3.

6.2.4 Function Menu

Figure 17: Function Menu Area

In the red box in Figure 17:

• File

– Room Statistics: Displays statistical data for all games in a single room (see
Section 8.6).

– Game Record: Displays the content of a single game (see Section 8.7).

• Debug

– AutoScroll: Determines whether the scrollbar automatically scrolls to the
bottom when content is updated.

– Increase Font Size: Increases the font size in the debug area.
– Decrease Font Size: Decreases the font size in the debug area.
– PopDebugWindow: Separates the debug area into an independentwindow
for easier debugging.

• Board

– Open Board: Opens the board webpage.

• Contest

– AutoStart: Automatically prepares and starts the competition in contest
mode.

• Search

– About: Displays information related to the current Search feature.

17

7 Board Introduction
Currently, the game board is presented via a webpage to enhance compatibility.

When the board option is set to use the default browser, the Client will automatically
open the board file and establish the connection for the user. Below is an introduc-
tion to the various sections and functionalities of the board.

Recommendation: Use Google Chrome.

7.1 Game Board Overview
The board includes the following sections: piece status, board, move history, and

results, as shown in Figure 18.

Piece Status Board History Move Result

Figure 18: Display Page

7.1.1 Piece Status

• The left side of the webpage displays the current status of both players’ pieces,
as shown in Figure 19.

(a) Alive Pieces (b) Dead Pieces

Figure 19: Piece Status

18

7.1.2 Board Display

• During your turn, movable pieces will be highlighted in gray at the bottom, as
shown in Figure 20(a).

• After selecting a gray-highlighted piece, its possible moves will be displayed as
light green squares. Click a square to move the piece, as shown in Figure 20(b)
and Figure 20(c).

(a) Start of Turn (b) Select A Piece (c) Move A Piece

Figure 20: Board Display and Movement

7.1.3 Manual Mode

• In manual mode, players must configure their board setup before the game
starts, as shown in Figure 21.

• Players can adjust their board setup by clicking two of their pieces to swap their
positions.

• Once configuration is complete, click the ”Set Finish” button to confirm.

Figure 21: Board Setup Screen

19

• If the opponent has not completed their setup, the screen will display a waiting
status, as shown in Figure 22.

• When both players are ready, the game will start automatically.

Figure 22: Waiting for Opponent to Set Board

• During your turn, you can propose a draw, resign, or undo a move, as shown in
Figure 23(a)(b).

• In manual mode, the results section will display your turn with your assigned
color. For example, in geister, the first player (”Your Turn”) is shown in orange,
and the second player is shown in green, as seen in Figure 24(a) and Figure 24(b).

(a) Propose Draw (b) Resign

Figure 23: Options During Your Turn

(a) First Player (b) Second Player

Figure 24: Manual Mode Color Explanation

20

7.2 Game Records
Follow the steps in Section 8.7 to access game records.

7.2.1 Instructions

• After opening the page, select a history file, as shown in Figure25.

• Use the keyboard keys ’w’, ’s’, ’a’, ’d’ to control forward and backward navigation
through the moves.

• The names and colors of the first and second players are shown on the file, as
displayed in Figure 26. The historical board is shown in Figure 27.

• The upper text box shows standard output, and the lower text box shows stan-
dard error output. These update with each move and can auto-wrap or be dis-
abled, as shown in Figure 28.

Figure 25: Display Page

Figure 26: First Player A1 and Second Player A2

21

Figure 27: Board and Move History

Figure 28: Standard Output and Standard Error Output

22

7.2.2 Creating Mid-Game Files

• Create midgame files needed for midgame play (see Section 8.4). These files
record all moves from the initial board to the selected board state. These files
can be used to start a new game with a custom board, as shown in Figure 30.

• Steps: Shown as Figure 29.

1. Select Move: Click a move to set it as the last step in the mid-game.
2. Enter File Name: Provide a name for the mid-game file.
3. Save File: Click the ”Save” button to download the file.

Figure 29: Steps for Creating a Mid-Game File

Figure 30: Start a new game using a custom board setup

23

7.3 Remote Page
• Assume the Client’s IP is 120.126.151.3. After creating or joining a room and
completing the settings as shown in Figure 31, the Client interface will display
as shown in Figure 32. The red box indicates the Client’s Port, assumed here to
be 50618.

• On the spectating computer, follow the instructions in Section 8.8 to select the
remote page, which will display the interface shown in Figure 33. Then enter the
Client’s IP (120.126.151.3) and Port (50618) to spectate.

Figure 31: Room Settings Page

Figure 32: Port Display Page

Figure 33: Remote Page Interface

24

7.4 Language Switching
The game board and game record pages both have language options located at

the bottom-left corner, as shown in Figure 34 and 35. Users can switch between Chi-
nese, English, and Japanese based on their preference.

Figure 34: Language Options on the Open and Enter Pages

Figure 35: Language Options on the Launcher

25

8 Features Overview

8.1 Resign
When the game’s outcome is nearly decided but the win condition is not yet met,

continuing the game can waste time. This feature allows a player or AI to resign and
end the match early. There are two ways to resign:

• Manual (defined in Section 7.1.3)

• AI

Note: The resign feature is available in all game modes.

Resign Online Server Local Testing
AI vs AI Yes Yes

AI vs Human Yes Yes
Human vs Human Yes Yes

8.2 Draw Offer
During the game, the current player can offer a draw by using the Draw Offer

function to ask the opponent if they agree to a draw. If the opponent accepts, the
game ends in a draw. Otherwise, the game continues. Additionally, if the opponent
does not respond, the player offering the draw does not have to wait and can make
their next move.

The operation of the draw offer is explained in Section 7.1.3.

Note: The time spent during the draw offer process counts towards the thinking
time, so be mindful of the time limit.

Note: For fairness, the draw offer feature is only supported under certain con-
ditions.

Draw Offer Online Server Local Testing
AI vs AI No No

AI vs Human No No
Human vs Human Yes No

8.3 Mid-Game Recovery After Disconnection
The Mid-Game Recovery feature allows players to resume the game after a net-

work disconnection. However, this feature cannot be used during local testing.

Figure 36 shows an example of the mid-game recovery settings, which require
the room host to select Yes in the Mid-Game options.

26

Figure 36: Example of Mid-Game Recovery Settings (interface from Figure 3)

8.4 Mid-Game Continuation
The Mid-Game Continuation feature enables players to start a game from a mid-

game position, which can be used for AI debugging.

The method to create a mid-game position is explained in Section 7.2.2.

Figure 37 shows an example of mid-game continuation settings, where the room
host must select the Select Board option in Mid-Game, and specify the path to the
mid-game file.

Figure 37: Example of Mid-Game Settings

27

8.5 Local Testing
The Local Testing feature provides an environment where players can test AI pro-

grams without needing an internet connection. It also offers debugging tools, al-
though some features are limited or only available during local testing. Details are
defined in the respective sections for each feature.

As shown in Figure 36, both players must check the Local Test box in the start
mode to enable local testing.

8.6 Room Statistics
Room statistics record information such as game results, win/loss, and time pa-

rameters for all games in a room. There are two ways to access room statistics:

• External Access: As shown in Figure 38(a), switch to the Other tab after open-
ing the client and click the Room Statistics button to view room statistics before
starting a game.

• In-Game Access: As shown in Figure 38(b), click File in the room page and select
Room Statistics to view current or past room statistics at any time during the
game.

(a) External Access (b) In-Game Access

Figure 38: Ways to Access Room Statistics

In Figure 39, the left table lists data for each game, while the right section displays
statistical charts for win rates and draw rates between players. The Switch button
allows toggling between game counts and rates, and the Reload button updates the
data with the latest game information.

Figure 39: Room Statistics Page

28

8.7 Game Records
This feature allowsplayers to viewdetailed content of eachgame, includingmoves,

programoutput, and results. Figure 40 shows instructions for accessinggame records.

Additional details are explained in Section 7.2.1.

(a) Access Method 1

(b) Access Method 2

Figure 40: Game Records Web Page

Note: When viewing the board and moving through steps, the scrollbar in the
adjacent output window may slightly misalign due to the program’s output
buffer, but it will generally be near the correct position.

8.8 Remote Board
To accommodate the need to viewweb pages and run the client on different com-

puters, a Remote Board feature has been added. This allows viewing the search board
of another computer through a browser.

Further details are provided in Section 7.3.

Figure 41: Starting Remote Board

29

8.9 Contest Mode
The Contest Mode provides an environment for contests, including opponent

matching and win/loss recording. Players can compete with others in this mode.

The activation method is detailed in Section 5.4.

Note: Competition Mode is only supported on online servers.

Contest Mode Online Server Local Testing
AI vs AI Yes No

AI vs Human Yes No
Human vs Human Yes No

8.10 Disconnection Reconnection
In general and contest modes, this feature allows players to reconnect to a game

room after a network disconnection or client closure.

The reconnection method is the same as joining a room or contest.

Note: This feature is only supported on online servers.

Reconnection Online Server Local Testing
AI vs AI Yes No

AI vs Human Yes No
Human vs Human Yes No

30

8.11 Custom Board
This feature allows users to customize the initial board directly without relying on

historical moves to recreate the board.

The room host must create a valid mid-game file as defined in Section 8.12, spec-
ifying the remaining pieces, initial board layout, and first-move color as needed.

After completing the custom board, the room host must follow the operations
in Section 8.4 to load the board.

(a) Example Custom Board File (b) Example Custom Board Display

Figure 42: Custom Board Example

31

8.12 Board File Format Description
Each ply begins with the current game state saved in the same folder as the AI

program, allowing the AI to read the board and search for the best move. The format
of board.txt is shown in Figure 43, with the meanings of each section as follows:

Figure 43: board.txt Example for Read Mode

1. Game start time

2. Players: The first player is listed first, followed by the second player.

3. Remaining pieces: Records the total remaining number of both players’ red/blue
pieces. Listed in order: first player red pieces, first player blue pieces, second
player red pieces, second player blue pieces.

4. Initial board: Piece codes are defined in Section 9.2.

5. Move time limit: If set to 0, there is no time limit.

6. Move history (from the perspective with the current player side at the bottom):

• 1. C,NORTH D,NORTH
In the first round, the first playermoves their piece C north, and the second
player moves their piece D north.

• 2. D,WEST C,NORTH
In the second round, the first player moves their piece D west, and the
second player moves their piece C north.

7. Move time log: The server records the timestamp of each move as milliseconds
elapsed since 1970/1/1 00:00:00 GMT.

8. Capture log: Records whether a piece was captured in each move and its color:

32

• 0: No piece captured
• 1: Red piece captured
• 2: Blue piece captured

Note: When reading board.txt, both the initial board (highlighted in light green
in Figure 43) and the move history (highlighted in light blue in Figure 43) are
required to load the latest board state.

Note: The file name must be board.txt. Ensure the board data can be read.

Note: In the light blue box of Figure 43, if a line contains only a single move,
there are no extra spaces at the end.

Supplement: If the game ends normally, the board.txt file will include the game
result after 6.
The format is:<Ending Type> <Winner/Draw> <Score>

• Ending Type:

– NoRedGhost: All red ghosts of the winning player were captured.
– NoBlueGhost: All blue ghosts of the losing player were captured.
– ChessEscape: The blue ghost of the winning player successfully es-
caped.

– GamePlyLimitDraw: The game ended in a draw due to move limit.

• Winner/Draw:

– <Player>wins: The specified player won.
– Draw: The game ended in a draw.

• Score:

– 1,0: First player won.
– 0,1: Second player won.
– 0.5,0.5: Draw.

Figure 44: Game Result Example

33

9 Communication Protocols
When connecting the programwith the client, a specific communication protocol

is required for interaction. This program supports three communication protocols:
TCP(Transmission Control Protocol), STDIO (Standard Input Output), and Manual, al-
lowing users to choose the desired communication method.

9.1 Board Position Notation
The board positions across all protocols follow the format shown in Table 1. Fol-

low the Japanese Geister server’s coordinate system (vertical-horizontal), where blue
ghosts can escape and win from the opponent’s corners (0-5, 5-5, or 0-0, 5-0).

(See Section 11 for details).

0 1 2 3 4 5

0 0-0 1-0 2-0 3-0 4-0 5-0

1 0-1 1-1 2-1 3-1 4-1 5-1

2 0-2 1-2 2-2 3-2 4-2 5-2

3 0-3 1-3 2-3 3-3 4-3 5-3

4 0-4 1-4 2-4 3-4 4-4 5-4

5 0-5 1-5 2-5 3-5 4-5 5-5

Table 1: Board Position Notation

9.2 Piece Codes
At the start of the game, piece codes are assigned as fixed values, with empty

positions represented by - .

0 1 2 3 4 5
0 - h g f e -
1 - d c b a -
2 - - - - - -
3 - - - - - -
4 - A B C D -
5 - E F G H -

Table 2: Piece Code Assignment

34

9.3 Standard Output
Since the default standard output has a buffer that may delay the client from

receiving the search output in real-time, users must ensure output is not held in the
buffer when sending replies. The following are reference code examples for C/C++:

1. Flush the buffer immediately after sending the reply.

Listing 1: Flush

// C
#include <stdio.h>
/* output response */
fflush(stdout);
fflush(stderr);

// C++
#include <cstdio>
/* output response */
std::cout.fflush(); // or std::cout << std::flush;
std::cerr.flush(); // or std::cerr << std::flush;

2. Set the buffer size to 0 at the beginning of the program.

Listing 2: Set buffer size

// C
#include <stdio.h>
setvbuf(stdout, NULL, _IONBF, 0);
setvbuf(stderr, NULL, _IONBF, 0);
/* output response */

// C++
#include <cstdio>
std::cout.rdbuf()->pubsetbuf(0, 0);
std::cerr.rdbuf()->pubsetbuf(0, 0);
/* output response */

9.4 Command List
Commands in all modes are consistent with the Japanese Geister server (see Sec-

tion 11) and are used in the following order during the game:

1. Set Red Ghosts

Sender Command Meaning

Server SET? Ask to set red ghosts

AI SET:ABCD\r\n Set ABCD as red ghosts

Server OK or NG Response

35

• Based on Section 9.2, input the piece codes for the four red ghosts.
• You must specify four positions for the red ghosts.
• Once both players finish setup, the server sends the board information to
both players and waits for the first player’s move.

2. Send Board Information and Request Move

Sender Command Meaning

Server MOV:14R24R34R ... 30u20u10u\r\n board info, ask for move

• Use Section 9.1 for the positions of all pieces. Specific conditions apply:
– On the board: Its coordinates
– Captured: (9,9)
– Escaped from corners: (8,8)

• Refer to Section 9.2 for describing piece colors using ABCDEFGHabcdefgh:
– Unrevealed red/blue pieces (on player’s side): R / B
– Revealed red/blue pieces (captured by either player): r / b
– Unknown color: u

3. Move a Piece

Sender Command Meaning

AI MOV:A,NORTH\r\n Move piece A north

Server OK or NG Response（No piece captured）
Server OKR or OKB Response（piece captured）

• Use Section 9.1 to specify the piece to move.
• From the perspective with the current player at the bottom, movement di-
rections can be specified using:
– NORTH, EAST, WEST, SOUTH
– or N, E, W, S

4. Game Over

Sender Command Meaning

Server WON:14R24R34R ... 30u20u10u\r\n board info, the player win

Server LST:14R24R34R ... 30u20u10u\r\n board info, the player lose

36

9.5 Server Response Meaning
After receiving a command, the server replies with the result in the following for-

mat:

• General Replies:

Command Meaning
OK \r\n Successfully processed
NG \r\n Processing failed

• Capture Replies:

Command Meaning
OKR\r\n Successfully captured a red ghost
OKB\r\n Successfully captured a blue ghost

Note: OK and NG include spaces, but OKR and OKB do not.

9.6 Flowchart
Figure 45 shows the communication flowchart. The server sends commands con-

tinuously until a termination command is received. The AI program only needs to
respond to commands without handling game flow logic.

Start

Server sends command to AI

AI sends response to Server

Is it over?

Stop

yes

no

Figure 45: Communication Flowchart

37

9.7 TCP Mode
In TCP mode, messages are transmitted using Sockets. Users input the corre-

sponding content for the Search program in the AI path and AI arguments fields.
When the Client starts the Search program to establish a connection, it automatically
appends the IP and port based on the entered AI path and AI arguments. Therefore,
users do not need to manually input the IP and port.

Selecting TCP connection mode allows the use of the sample file tcp.jar as shown
in Figure 46.

9.7.1 AI Files

The Search folder contains files as shown in Figure 46:

Figure 46: Search Folder File List

The AI that uses TCP mode is tcp.jar.

• tcp.jar: RandomPlayer AI from the Japanese Geister server (geister.jar).

– AI Path: <java.exe path>
– AI Arguments: -jar <tcp.jar path>

As shown in Figure 47, select the TCP mode and refer to Figure 48 to fill in the
path and arguments in the bottom right corner.

Figure 47: Start the TCP AI

38

Figure 48: tcp path and args example

the Client program will automatically append the IP and an available port to the
end of the command.

The actual command called by the Client for Search is: <AI Path content> <AI
Args content> IP port.

Therefore, the user’s AI program needs to read the IP and port from the argu-
ments to establish a connection.

For example, in the sample code, args[0] represents the IP and args[1] represents
the port。

39

9.7.2 Sample Code

Sample code can be downloaded from 120.126.151.216 (Page Link).
The TCP folder contains files as shown in Figure 49 and 50:

Figure 49: player Folder

Figure 50: utils Folder

The TCP sample code originates from the Japanese Geister server’s GitHub (link
in Section 11).

40

http://120.126.151.216/download.html

9.8 STDIO Mode
STDIO (Standard Input/Output) represents a protocol where communication oc-

curs through standard input and output streams.

Although the server and AI communicate via the client, the client only handles
data transmission without altering the commands between the server and AI. This
section introduces the command format and functionality between the server and AI.

9.8.1 AI Files

The Search folder contains files as shown in Figure 51:

Figure 51: Search Folder File List

The AI that uses STDIO mode is stdio.exe.

• stdio.exe: A random-move AI. If it cannot be used directly, refer to Section 9.8.2
for compilation instructions.

– AI Path: <stdio.exe path>
– AI Arguments: None

As shown in Figure 52 select the STDIO mode and refer to Figure 53 to fill in
the path in the bottom right corner.

Figure 52: Start the STDIO AI

41

Figure 53: stdio path example

9.8.2 Building AI Files with Sample Code

Sample code can be downloaded from 120.126.151.216 (Page Link).
The STDIO folder contains files as shown in Figure 54:

Figure 54: STDIO Folder

Sample code includes main.cpp, MyAI.h, MyAI.cpp, and run.sh.

Execute run.sh or open a terminal in the folder and enter:

Windows/macOS

g++ -std=c++11 -o stdio main.cpp MyAI.cpp

This will successfully compile stdio.exe, which can then be placed in the Search
folder for the client to locate.

42

http://120.126.151.216/download.html

9.8.3 STDIO Sample Code Explanation

1. Receive Messages:

main.cpp

int main(){
...
do{
// read command
if (fgets(read, 1024, stdin) == NULL) {

fprintf(stderr, "Failed to read from stdin\n");
break;

}
...
if (strstr(data[0], "MOV?") != nullptr){

myai.Get(data, write);
}
else if (!strcmp(data[0], "/exit")){

myai.Exit(data, write);
break;

}
...
}while(true);
return 0;

}

Read from standard input (stdin) and call different functions based on the com-
mand received.

2. Set Red Ghosts:

MyAI.cpp

void MyAI::Set(char* response){
snprintf(response, 50, "SET:ABCD\r\n");

}

When receiving the SET? command, call the corresponding function to deter-
mine the response.

43

3. Initialize the Board:

MyAI.cpp

void MyAI::Ini(const char* data[], char* response){
...
this->Init_board_state(position);
snprintf(response, ... , position[15]);

}

Call Init_board_state(char* position) to set positions anddetermine the response.

4. Send Moves:

MyAI.cpp

void MyAI::Get(const char* data[], char* response){
...
this->Set_board(position);
...
this->Generate_move(move);
snprintf(response, 50, "MOV:%s", move);

}

• Call Set_board(char* position) to update the current board positions.
• Call Generate_move(char* move) to generate moves and determine the re-
sponse.

44

5. AI Move Generation:

MyAI.cpp

void MyAI::Generate_move(char* move){
...
// get legal moves
int move_count = this->get_legal_move(result);
...
// randomly choose a legal move
int rand_move = rand() % move_count;
int piece = result[rand_move * 2];
// determine the direction of the move
const char* direction;
switch(result[rand_move * 2 + 1]) {

case 0: direction = "NORTH"; break;
case 1: direction = "SOUTH"; break;
case 2: direction = "WEST"; break;
case 3: direction = "EAST"; break;
default: direction = "UNKNOWN"; break;

}
...
// generate the new move string
snprintf(move, 50, "%c,%s", 'A' + piece - 1, direction);
this->Make_move(piece, direction);
...

}

• Call get_legal_move(int* result) to check for legal moves.
• Randomly choose a piece and determine its move direction (canmodify this
part to implement your AI logic).

• Generate response content.
• Call Make_move(const int piece, const char* direction) to update the board.

6. Exit Game:

MyAI.cpp

void MyAI::Exit(const char* data[], char* response){
fprintf(stderr, "Bye~\n");

}

When receiving the /exit command, output an exit message.

45

7. Other Functions:

Function Meaning

Init_board_state(char* position) Set initial board state

Set_board(char* position) Update board state

Print_chessboard() Print the board

get_legal_move(int* result) Get all legal moves

referee(int piece, int* dst) Get possible moves for a specific piece

Make_move(const int piece, const char* direction) Update board with piece and direction

46

10 Q & A

10.1 Server Connection Error (CONNECT SERVER ERROR)
After pressing the connect button, an error appears as shown in Figure 55, indi-

cating the server cannot be reached.

Figure 55: Server Connection Error (CONNECT SERVER ERROR)

Solution: Please verify that the Server IP is correct. If the issue persists, contact
the relevant personnel.

10.2 Login Error (LOGIN ACCOUNT FAILED)
After pressing the connect button, an error appears as shown in Figure 56, indi-

cating a login failure.

Figure 56: Login Error (LOGIN ACCOUNT FAILED)

Solution: Please verify that the account and password are correct. If the issue
persists, contact the relevant personnel.

10.3 AI-Related Issues
Issues related to AI, such as failure to execute or standard output problems.

• My AI path is correct, but it fails to start properly.

Solution: Try using an absolute path and confirm the program execution
permissions. If the issue persists, contact the relevant personnel.

47

• Why does the output appear in chunks after a delay instead of displaying in real-
time?

Solution: This is due to output buffering. Ensure you flush the output
buffer after writing, or set the output buffer size to zero.

10.4 Input Parameter Errors
After pressing the connect button, an error appears as shown in Figure 57, indi-

cating invalid field input. Various scenarios are listed below:

Figure 57: Input Parameter Error

• OOO is Empty

Example: Account field is empty

Solution: Please ensure the field is filled. If the issue persists, contact the
relevant personnel.

• Please select the OOO

Example: Please select the Start Mode

Solution Ensure the field is selected. If the issue persists, contact the rele-
vant personnel.

• The Input of OOO is not a number

Example: The Input of RepeatTime Field is not a number

Solution: Ensure the field contains numeric characters. If the issue per-
sists, contact the relevant personnel.

• Value of OOO Overflow

Example: Value of RepeatTime Overflow

48

Solution: Ensure the value entered is less than 232 . If the issue persists,
contact the relevant personnel.

• OOO must larger than zero

Example: RepeatTime must larger than zero

Solution: Ensure the value entered is greater than zero. If the issue per-
sists, contact the relevant personnel.

• The Input of OOO is not a Path

Example: The Input of BoardPath Field is not a Path

Solution: Ensure the field contains a valid file path for the board file. Use
an absolute path if possible. If the issue persists, contact the relevant per-
sonnel.

• The Input of BoardPath Field can not Read

Solution: Ensure the board file has read permissions. If the issue persists,
contact the relevant personnel.

• Search Permission denied

Solution: Ensure the AI program has execution permissions. If the issue
persists, contact the relevant personnel.

• In order to use HUMAN mode, Please change the browser mode.

Solution: Verify that the Board Display Mode in the room settings is set
to remote or Default Browser. If the issue persists, contact the relevant
personnel.

10.5 Server Communication Error
During gameplay, an error appears as shown in Figure 58, indicating issues with

sending or receiving data from the server.

• Send Data Error (SEND TO SERVER ERROR)

• Receive Data Error (RECV FROM SERVER ERROR)

49

Figure 58: Server Data Communication Error

Solution: Check the network connection and use a stable network. If the issue
persists, contact the relevant personnel.

10.6 STDIO Communication Error (STDOUT SEND DATA TO SEARCH
ERROR)

At the start of gameplay, an error appears as shown in Figure 59, indicating failure
to send data via Stdout to Search.

Figure 59: STDIO Communication Error

Solution: Verify the connection mode settings, as this is often caused by an in-
correct mode selection. If the issue persists, contact the relevant personnel.

11 References and Contact Information
1. Japan Geister Server GitHub (Page Link)

2. Jr-ChangChen, Gang-Yu Fan, Hung-Jui Chang, Tsan-shengHsu (2018). Compress-
ing Chinese Dark Chess EndgameDatabases by Deep Learning. IEEE Transactions
on Games 10(4), 413–422.

3. Hung-Jui Chang, Jr-Chang Chen, Gang-Yu Fang, Chih-Wen Hsueh, Tsan-sheng
Hsu (2018). Using Chinese Dark Chess Endgame Databases to Validate and Fine-
Tune Game Evaluation Functions. ICGA Journal 40(2), 45–60.

4. Hung-Jui Chang, Jr-Chang Chen, Chih-Wen Hsueh, Tsan-sheng Hsu (2018). Analy-
sis and Efficient Solutions for 2×4 Chinese Dark Chess. ICGA Journal 40(2), 61–76.

5. Chu-Hsuan Hsueh, I-Chen Wu, Tsan-sheng Hsu, Jr-Chang Chen (2018). An Inves-
tigation of Strength Analysis Metrics for Game-Playing Programs: A Case Study
in Chinese Dark Chess. ICGA Journal 40(2), 77–104.

6. Chu-Hsuan Hsueh, I-Chen Wu, Wen-Jie Tseng, Shi-Jim Yen, Jr-Chang Chen (2016).
An Analysis for Strength Improvement of an MCTS-Based Program Playing Chi-
nese Dark Chess. Theoretical Computer Science 644(C), 63–75.

50

https://github.com/nishiko-ji/geister_server.java
http://ieeexplore.ieee.org/document/8281641/
http://ieeexplore.ieee.org/document/8281641/
https://content.iospress.com/articles/icga-journal/icg048
https://content.iospress.com/articles/icga-journal/icg048
https://content.iospress.com/articles/icga-journal/icg049
https://content.iospress.com/articles/icga-journal/icg049
https://content.iospress.com/articles/icga-journal/icg046
https://content.iospress.com/articles/icga-journal/icg046
https://content.iospress.com/articles/icga-journal/icg046
https://doi.org/10.1016/j.tcs.2016.06.025
https://doi.org/10.1016/j.tcs.2016.06.025

7. Jr-Chang Chen, Ting-Yu Lin, Tsan-sheng Hsu (2015). Equivalence Classes in Dark
Chess Endgames. IEEE Transactions on Computational Intelligence and AI in Games
7(2), 109–122.

8. Shi-Jim Yen, Cheng-Wei Chou, Jr-Chang Chen, I-Chen Wu, Kuo-Yuan Kao (2015).
Design and Implementation of Chinese Dark Chess Programs. IEEE Transactions
on Computational Intelligence and AI in Games 7(1), 66–74.

9. Bo-Nian Chen, Bing-Jie Shen, Tsan-sheng Hsu (2010). Chinese Dark Chess, ICGA
Journal 33(2), 93–106.

If there is still anything unclear, please contact:

• Jr-Chang Chen (陳志昌), email: jcchen@gm.ntpu.edu.tw

• 許嘉銘, email: ldslds449@gmail.com

• 陳冠銓, email: penguinxdxd@gmail.com

• 吳建德, email: jimmy2053441@gmail.com

51

http://ieeexplore.ieee.org/document/6799248/
http://ieeexplore.ieee.org/document/6799248/
http://ieeexplore.ieee.org/document/6826513/
https://content.iospress.com/articles/icga-journal/icg33204
mailto:jcchen@gm.ntpu.edu.tw
mailto:ldslds449@gmail.com
mailto:penguinxdxd@gmail.com
mailto:jimmy2053441@gmail.com

	Preface
	Game Introduction
	File Description
	Environment Setup
	Opening the Program
	Game Setting
	Room Introduction
	Board Introduction
	Features Overview
	Communication Protocols
	Q & A
	 References and Contact Information

